1223

{數學}國一數學

1.不大於200的正整數中(1) 能被4整除者有______個?(2) 能被6整除者有______個?(3) 能被4或6整除者有_______個?2.倩敏伸出左手

由大姆指開始數1

接著食指數2

中指數3

無名指數4

小指數5

在無名指數6

中指數7

食指數8

回到大拇指數9

在食指數10

中指數11一直屬下去

則:(1). 當數到1234時

是數到哪一根手指頭?(2). 從1數到1234

大拇指共數了幾次?(3). 從1數到1234

中指共數了幾次?
1.(1)50個(=200/4)(2)33個(=200/6

餘數不用考慮)(3)16個(=200/12

因為[4

6]=12)2.每「9」一單位(9

18

27...)

每數完一單位

下一個單位時的指頭就是下一個。

例如:第一次數到9時

位置在拇指;第二次數到18時

位置在食指;第三次數到27時

位置在中指;此此類推........(1)先看移動了幾次:1234/9=137...1

137次。

又每5次就會回到拇指

也就是每5次一循環

看循環了幾次:137/5=27...2循環了27次後

餘2就表示停在第二個位置

也就是「食指」。

#(2)大拇指的數目是:1

9

17.....也就是說除以8餘1。

我將大拇指的數目表示成8k 1。

(k也就是代表次數)因此最接近1234且能表示成8k 1的數為(k要整數):35^2=1225

1225 8=1233

k=154

即大拇指數了154次。

#(3)中指的數目是:3

7

11....也就是每次都加四的數列。

假設最接近1234的數為3 4h(h要整數)

那麼:h=300

此數為1203h=305

此數為1223h=306

不行

超過1234了。

所以h=305

加上第一個3也數過

所以總共數了306次。

#
1.(1)能被4整除表示他是4的倍數所以 200÷4=50200個數中有50個4的倍數(2)能被6整除表示他是6的倍數所以200÷6=33......2共33個(3)能被4或6整除表示它是4或6的倍數

但是4或6的倍數有的會重複

就是12的倍數(因為4和6的最小公倍數是12)所以4的倍數有50個

6的倍數有33個

而12的倍數200÷12=16....8

有16個所以能被4或6整除者共有50 33-16=67個Ans:(1)50 (2)33 (3)672.它是拇指、食指、中指、無名指、小指、無名指、中指、食指、拇指、食指.......就可看出它是8個一循環(拇指、食指、中指、無名指、小指、無名指、中指、食指)(1)1234÷8=154...2所以是從拇指開始數154個8循環剩下2個

所以是食指(2)這8個循環中只有食指和小指指數過一次

所以它有154次8個循換

所以有154次數到拇指

再加上剩下的餘數是2

分別是拇指和食指

所以有154 1=155次(3)中指一個循環數過2次

所以是154×2=308次Ans:(1)食指 (2)155次 (3)308次
1.(1)每4個數字可被4整除:1

2

3

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 toye44405 的頭像
    toye44405

    《爭龍傳Online》

    toye44405 發表在 痞客邦 留言(0) 人氣()